Research Highlights

Invented 3D Magnetic Printing

Smarter method for magnetic nanoparticle drug delivery

Overcoming shear alignment with magnetics

Composite architectures that change shape

Reinforcing composites in three dimensions

Assembling Hierarchical Colloidal Structures with Multipole Symmetry
Highlights of a few recent papers are below..
High-performance battery electrodes via magnetic templating
Nature Energy, 2016
Here we show that magnetic control of sacrificial features enables the creation of directional pore arrays in lithium-ion electrodes. The directional pores result in faster charge transport kinetics and enable electrodes with more than threefold higher area capacity at practical charge–discharge rates. We demonstrate these capabilities in laboratory cells under various test conditions, including an electric vehicle model drive cycle.
Actuating Soft Matter with Magnetic Torque
Feature Paper in Advanced Functional Materials, 2016
Here, recent significant developments are reviewed in manipulating soft matter systems through the use of magnetic torque. Magnetic torque enables the orientation, assembly, and manipulation of thermally fluctuating systems in broad material fields including biomaterials, ceramic and composite precursor suspensions, polymer solutions, fluids, foams, and gels. Magnetism offers an effective, safe, and massively parallel manufacturing approach. By exploiting magnetic torque, leading soft matter researchers have demonstrated new technologies in rheology, life sciences, optics, and structural materials. Specifically, magnetic torque has been used to assemble particle suspensions, to fabricate and actuate composite materials, and to control and manipulate biological materials. In each of these applications, there are energetic limitations to magnetic torque that need to be understood and characterized. However, magnetic torque offers a promising remote-controlled approach to creating and enabling new soft matter technologies.
3D Magnetic Printing of Composites
Nature Communications 2015
Discontinuous fibre composites represent a class of materials that are strong, lightweight and have remarkable fracture toughness. These advantages partially explain the abundance and variety of discontinuous fibre composites that have evolved in the natural world. Many natural structures out-perform the conventional synthetic counterparts due, in part, to the more elaborate reinforcement architectures that occur in natural composites. Here we present an additive manufacturing approach that combines real-time colloidal assembly with existing additive manufacturing technologies to create highly programmable discontinuous fibre composites. This technology, termed as ‘3D magnetic printing’, has enabled us to recreate complex bioinspired reinforcement architectures that deliver enhanced material performance compared with monolithic structures. Further, we demonstrate that we can now design and evolve elaborate reinforcement architectures that are not found in nature, demonstrating a high level of possible customization in discontinuous fibre composites with arbitrary geometries.
Smart assembly of magnetic nanoparticles for tissue penetration
Langmuir 2015
Magnetic concentration of drug-laden magnetic nanoparticles has been proven to increase the delivery efficiency of treatment by 2-fold. In these techniques, particles are concentrated by the presence of a magnetic source that delivers a very high magnetic field and a strong magnetic field gradient. We have found that such magnetic conditions cause even 150 nm particles to aggregate significantly into assemblies that exceed several micrometers in length within minutes. Such assembly sizes exceed the effective intercellular pore size of tumor tissues preventing these drug-laden magnetic nanoparticles from reaching their target sites. We demonstrate that by using dynamic magnetic fields instead, we can break up these magnetic nanoparticles while simultaneously concentrating them at target sites. The dynamic fields we investigate involve precessing the field direction while maintaining a field gradient. Manipulating the field direction drives the particles into attractive and repulsive configurations that can be tuned to assemble or disassemble these particle clusters. Here, we develop a simple analytic model to describe the kinetic thresholds of disassembly and we compare both experimental and numerical results of magnetic particle suspensions subjected to dynamic fields. Finally we apply these methods to demonstrate penetration in a porous scaffold with a similar pore size to that expected of a tumor tissue.
Understanding and overcoming shear alignment of fibers during extrusion
Soft Matter 2015
Fiber alignment is the defining architectural characteristic of discontinuous fiber composites and is dictated by shear-dominated processing techniques including flow-injection molding, tape-casting, and moldcasting. However, recent colloidal assembly techniques have started to employ additional forces in fiber suspensions that have the potential to change the energy landscape of the shear-dominated alignment in conditions of flow. In this paper, we develop an energetics model to characterize the shear-alignment of rigid fibers under different flow conditions in the presence of magnetic colloidal alignment forces. We find that these colloidal forces can be sufficient to manipulate the energetic landscape and obtain tunable fiber alignment during flow within even small geometries, such as capillary flow. In most conditions, these colloidal forces work to freeze the fiber orientation during flow and prevent the structure disrupting phenomenon of Jeffrey's orbits that has been accepted to rule fiber suspensions under simple shear flow.
Bioinspired materials that self-shape through programmed microstructures
2014, Soft Matter
Nature displays numerous examples of materials that can autonomously change their shape in response to external stimuli. Remarkably, shape changes in biological systems can be programmed within the material’s microstructure to enable self-shaping capabilities even in the absence of cellular control. Here, we revisit recent attempts to replicate in synthetic materials the shape-changing behavior of selected natural materials displaying deliberately tuned fibrous architectures. Simple processing methods like drawing, spinning or casting under magnetic fields are shown to be effective in mimicking the orientation and spatial distribution of reinforcing fibers of natural materials, thus enabling unique shape-changing features in synthetic systems. The bioinspired design and creation of self-shaping microstructures represent a new pathway to program shape changes in synthetic materials. In contrast to shape-memory polymers and metallic alloys, the self-shaping capabilities in these bioinspired materials originate at the microstructural level rather than the molecular scale. This enables the creation of programmable shape changes using building blocks that would otherwise not display the intrinsic molecular/atomic phase transitions required in conventional shape-memory materials.